Interaction of Atlantic and Tropical Pacific Multidecadal Variability as Modulated by ENSO

> Aaron Levine 4th ENSO CLIVAR conference October 15, 2018

Thank you to Michael McPhaden, Dargan Frierson, and Elizabeth Maroon

Sea Level Pressure Trends

Model Representation of Walker Circulation Trends

Mean State Impact

- Warm Atlantic \rightarrow Stronger Trades (McGregor et al 2014)
- Stronger Trades → Stronger Cold Tongue (Li et al 2015)
- Stronger Cold Tongue → Changes in ENSO (Levine et al 2017, 2018)

Seasonality of ENSO

Relationship ENSO Annual Cycle and ENSO Variance

- Stronger annual cycle, weaker ENSO variance
- El Nino events are still strongly noise forced, so a strong event can happen at any time

Changes in ENSO Growth Rate

- Large seasonal changes in Damping from mean current, small in annual mean
- Annual cycle of growth rate and annual mean change fit what is expected from the conceptual model
 - Increased annual mean, decreased annual cycle
- Changes in both boreal spring and fall

Coupled Model

- Limited observational record
 - 1-2 cycles
 - 20CR reanalysis/ERSST
- Coarse resolution CM2M
 - Atm. 3.5 x 3 with 24 levels
 - Ocean 3 degree (0.6 in tropics), 5 levels in upper 50 m
 - Control simulation of 270 years

Model AMV

- Control simulation does not have sufficient multidecadal variability in Atlantic
- Common error among climate models (Frankignoul et al 2017)

Monthly values for the AMO index, 1856 -2013

Multidecadal Walker Circulation in Control

- Fraction of annual mean variability expressed at all multidecadal time periods significantly less in simulation than reanalysis
- Length of multidecadal period is more important in the model than in the reanalysis

Walker Circulation in Control Simulation

- Like Kociuba and Power, modelled ENSO is too periodic
- Clear minimum (r=-0.35) and secondary maximum (r=0.2)

Changes in ENSO Growth Rate

- Either overall weakening on ENSO amplitude or stronger damping during boreal spring
 - Depends on phase of AMO
- BOTH should make ENSO less regular

Coupled Model Experiment

- Coarse resolution CM2M
 - Atm. 3.5 x 3 with 24 levels
 - Ocean 3 degree (0.6 in tropics), 5 levels in upper 50 m
- AMO-forced experiments
 - AMO SSTs plus model seasonal cycle
 - 50-year AMO
 - Different Experiments
 - Whole AMO
 - Full SST amplitude
 - Half SST amplitude
 - Quarter SST amplitude
 - Sub Polar (40-70N box)
 - Tropical (0-30N box)

- Adding AMO increases tropical Pacific multidecadal variability at all timescales
- The tropical Atlantic forces larger changes than the extra-tropical Atlantic.
- Still timescale matters (red noise versus periodic Atlantic Multidecadal Variability)

- Reduction of the overall autocorrelated-ness of the Walker circulation
- Simulations forced with strong tropical Atlantic retain a secondary peak

- All AMO forced simulations still are AR2
- Improvement from control with all simulations
 - Particularly with reduced amplitude AMO

- All AMOs increase PDF width of trends.
- Large tropical forced AMOs produce the largest magnitude decadal WC trends
 - Bimodal distribution?
- Subpolar and reduced SST forced simulations expand trends and keep shape of trend PDF

Conclusions

- AMO variability impacts tropical Pacific
 - Positive AMO increase in NH ITCZ precipitation
 - Decrease amplitude of ENSO and increase seasonal cycle
- Forced AMO variability decreases ENSO regularity
 - Increases variability for tropical decadal Pacific
 - Increases range of normal trends in multidecadal Walker circulation
 - Maybe the last 35 years are NOT that unusual

Extra Slides

Multidecadal ENSO Variability

- 130 year reconstruction
- Periods of greater activity

AMO impacts on Salinity

- Strong correlation with AMO leading by ~10 years
- IPO (or PDO) lags by ~5 years

Inverse Changes to Amplitude and Barrier Strength

- Decrease only λ_{AC} , decrease both variance and SPB
- Increase only λ_{am} , increase variance and SPB unchanged
- Instead need both to change together

- Large seasonal changes in Damping from mean current, small in annual mean
- Annual cycle of growth rate and annual mean change fit what is expected from the conceptual model
 - Increased annual mean, decreased annual cycle
- Changes in both boreal spring and fall

ENSO Annual Cycle

- ENSO standard deviation vartiesr station of prtal times t+t
- Average the difference between Reaksum ao real wirfber,
- from 1-12 months ninimum in boreal For example
- - Spring max from August r=0.85, min from February r=-.08, bstr=0.93
 - $-\tau$ =8, max from August r=0.79, min from March r=-.16, bstr=0.95
 - From 1980-2014, value at 0.74
- Linear ENSO with an annual cycle in growth can recreate both properties (Stein et al 2010, Levine and McPhaden 2015)

Recharge Oscillator Model

$$\frac{dT}{dt} = -/T + Wh + SX / = /_{am} + /_{AC} \sin(W_{AC}t)$$

$$\frac{dh}{dt} = -WT \qquad /_{am} = 2 /_{AC} = 2.5$$

$$\frac{dX}{dt} = rX + W(t)$$
Conceptual recharge oscillator model

- Captures basics of ENSO physics, heat content and temperature in quadrature
- Noise Forced
- With sinusoidal growth rate captures monthly variance and autocorrelation

Linked Growth Rates

