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Sea Level Pressure Trends

Vecchi et al 2006



Model Representation of Walker Circulation 
Trends

Kociuba and Power 2015



Kociuba
and Power 
2015



Mean State Impact

• Warm Atlantic Stronger Trades (McGregor et al 2014)

• Stronger Trades  Stronger Cold Tongue (Li et al 2015)

• Stronger Cold Tongue  Changes in ENSO (Levine et al 
2017, 2018)



Seasonality of ENSO
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Relationship ENSO Annual Cycle and ENSO 
Variance

• Stronger annual cycle, weaker ENSO variance

• El Nino events are still strongly noise forced, so a 
strong event can happen at any time
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Changes in ENSO Growth Rate

• Large seasonal changes in Damping from mean current, small in annual mean

• Annual cycle of growth rate and annual mean change fit what is expected from the 
conceptual model

• Increased annual mean, decreased annual cycle

• Changes in both boreal spring and fall

ΔλAC=-0.2

Δλam=0.6
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Coupled Model
• Limited observational record

• 1-2 cycles

• 20CR reanalysis/ERSST

• Coarse resolution CM2M
• Atm. 3.5 x 3 with 24 levels

• Ocean 3 degree (0.6 in tropics), 5 
levels in upper 50 m

• Control simulation of 270 years
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Model AMV
• Control simulation does not have 

sufficient multidecadal variability in 
Atlantic

• Common error among climate 
models (Frankignoul et al 2017)



Multidecadal Walker Circulation in Control

• Fraction of annual mean 
variability expressed at all 
multidecadal time periods 
significantly less in 
simulation than reanalysis

• Length of multidecadal
period is more important in 
the model than in the 
reanalysis



Walker Circulation in Control Simulation

• Like Kociuba and Power, 
modelled ENSO is too 
periodic

• Clear minimum (r=-
0.35) and secondary 
maximum (r=0.2)



Changes in ENSO Growth Rate

• Either overall weakening on ENSO amplitude or stronger 
damping during boreal spring
• Depends on phase of AMO

• BOTH should make ENSO less regular

ΔλAC=-0.2

Δλam=0.6
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Coupled Model Experiment
• Coarse resolution CM2M

• Atm. 3.5 x 3 with 24 levels
• Ocean 3 degree (0.6 in tropics), 5 

levels in upper 50 m

• AMO-forced experiments
• AMO SSTs plus model seasonal 

cycle
• 50-year AMO
• Different Experiments

• Whole AMO
• Full SST amplitude
• Half SST amplitude
• Quarter SST amplitude

• Sub Polar (40-70N box)
• Tropical (0-30N box)
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• Adding AMO increases tropical Pacific multidecadal variability at all 
timescales

• The tropical Atlantic forces larger changes than the extra-tropical Atlantic.
• Still timescale matters (red noise versus periodic Atlantic Multidecadal

Variability)



• Reduction of the overall 
autocorrelated-ness of the 
Walker circulation

• Simulations forced with strong 
tropical Atlantic retain a 
secondary peak



• All AMO forced 
simulations still are 
AR2

• Improvement from 
control with all 
simulations
• Particularly with 

reduced amplitude 
AMO



• All AMOs increase PDF width 
of trends.

• Large tropical forced AMOs 
produce the largest 
magnitude decadal WC 
trends
• Bimodal distribution?

• Subpolar and reduced SST 
forced simulations expand 
trends and keep shape of 
trend PDF



Conclusions

• AMO variability impacts tropical Pacific
• Positive AMO increase in NH ITCZ precipitation

• Decrease amplitude of ENSO and increase seasonal cycle

• Forced AMO variability decreases ENSO regularity
• Increases variability for tropical decadal Pacific

• Increases range of normal trends in multidecadal Walker circulation
• Maybe the last 35 years are NOT that unusual



Extra Slides



Regional Atlantic SST changes



Multidecadal ENSO Variability

• 130 year reconstruction

• Periods of greater activity



AMO impacts on Salinity
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• Strong correlation with AMO 
leading by ~10 years

• IPO (or PDO) lags by ~5 years



Inverse Changes to Amplitude and Barrier 
Strength

• Decrease only λAC, decrease both variance and SPB

• Increase only λam, increase variance and SPB unchanged

• Instead need both to change together



Changes in ENSO Growth Rate

• Large seasonal changes in Damping from mean current, small in annual mean

• Annual cycle of growth rate and annual mean change fit what is expected from the 
conceptual model

• Increased annual mean, decreased annual cycle

• Changes in both boreal spring and fall

ΔλAC=-0.2

Δλam=0.6



• Find the maximum and minimum 
autocorrelation for all times t+τ

• Average the difference between 
maximum and minimum for τ
from 1-12 months

• For example
– τ=6, max from August r=0.85, min 

from February r=-.08, bstr=0.93
– τ=8, max from August r=0.79, min 

from March r=-.16, bstr=0.95
– From 1980-2014, value at 0.74

• Linear ENSO with an annual cycle 
in growth can recreate both 
properties (Stein et al 2010, 
Levine and McPhaden 2015)

• ENSO standard deviation 
varies by month

• Peaks in boreal winter, 
minimum in boreal 
spring

ENSO Annual Cycle
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Recharge Oscillator Model

• Conceptual recharge oscillator model

• Captures basics of ENSO physics, heat content and temperature in 
quadrature

• Noise Forced

• With sinusoidal growth rate captures monthly variance and 
autocorrelation

dT

dt
= -lT +wh+sx

dh

dt
= -wT

dx

dt
= rx +w(t)

l = lam + lAC sin(wACt)

lam = 2

lAC = 2.5



Linked Growth Rates

lAC = lAC0

lam
lam0

rlamlAC

lam = lam0 + Dl sin(wDt)

l = lam + lAC sin(wACt)


