Methods for identifying what kind of sea level rise information users need: experiences from the INSeaPTION project

Sandy Bisaro

Jochen Hinkel, Thomas van der Pol

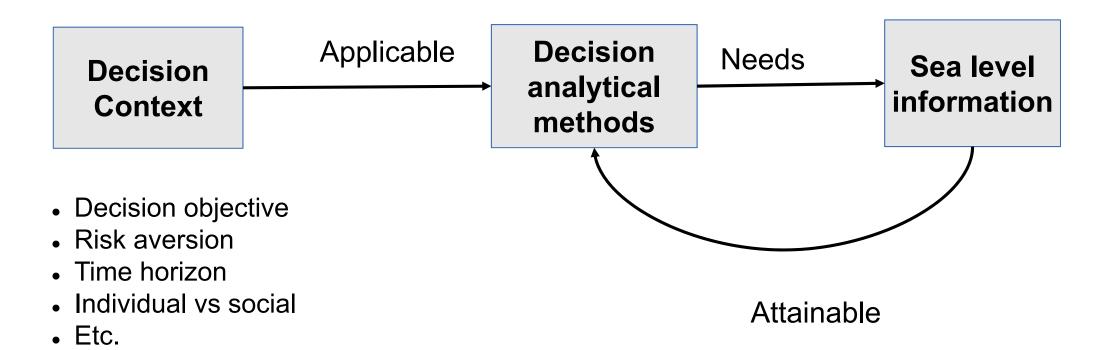
Global Climate Forum (GCF), Berlin

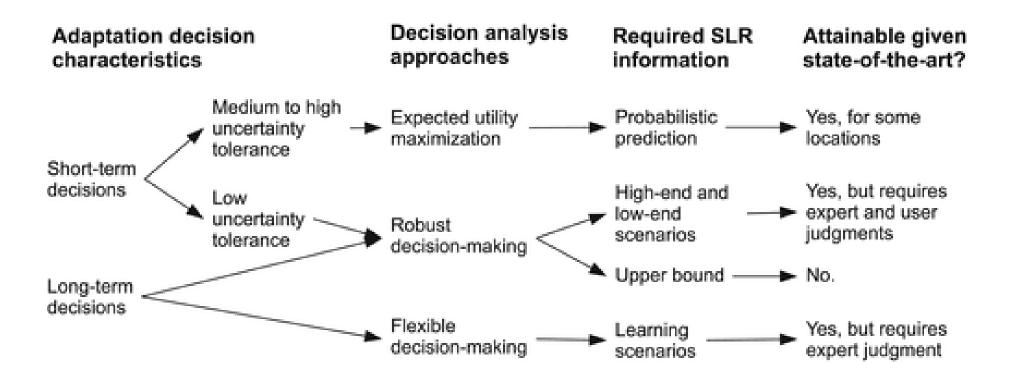
WCRP Climate Services Workshop, BRGM, Orléans, France Nov. 12, 2019

Needs stated by users

- Needs are subjective and socially constructed
- Needs for SLR information expressed by users may not serve the purpose of adapting well
 - Needs may be culturally determined or legally prescribed
 - Needs may be opportunistic: A large body of social science literature shows how opportunistic behaviour and individual interests hamper organisations to pursue their organisational goals (e.g., Levine & Forrence, 1990)
- Remarkably little empirical research on this in the climate domain
 - Existing studies 'ask users' what they need:
 - Coastal domain (Madsen et al. 2018)
 - Climate decision-support tools (e.g. ClimateADAPT, UNEP Provia)

Three perspective on decision-making


Decision-analytical	Empirical	Transdisciplinary
Prescriptive	Descriptive	Normative
How to make the "best" decision, given some criteria?	How are decisions actually made and why?	How to design a fair, inclusive and effective decision making process?
 Compute the "best" option Formalisation of decisions and subjective preference 	 Systematic cognitive biases (Tversky and Kahneman, 1972) Power, regulatory capture, opportunistic behaviour (Levine & Forrence, 1990) 	Avoid power: powerless discourse (Habermas 1981), deliberative democracy" (Besette 1980, Dryzek 2000)


Three perspective on decision-making

Decision-analytical	Empirical	Transdisciplinary
Prescriptive	Descriptive	Normative
How to make the "best" decision, given some criteria?	How are decisions actually made and why?	How to design a fair, inclusive and effective decision making process?
 Compute the "best" option Formalisation of decisions and subjective preference 	 Systematic cognitive biases (Tversky and Kahneman, 1972) Power, regulatory capture, opportunistic behaviour (Levine & Forrence, 1990) 	Avoid power: powerless discourse (Habermas 1981), deliberative democracy" (Besette 1980, Dryzek 2000)

Needs from a decision-analytical perspective

Needs from a decision-analytical perspective

An example from the Maldives

Land reclamation in the Maldives

- → Purposes: Residential, airports, tourism, waste management, industry
- → Land extensions levelled at existing island height to avoid drainage problems
- → Current Guideline 1.50 -1.75 m above current MSL for new projects

Limitations:

- No differentiation to account for local differences in flood probabilities or exposure for planned land use
- 2. Ad hoc "allowance" for SLR does not address robustness
- 3. Flood-proof versus risk-based heights of reclaimed land
- 4. Options to increase flexibility & future lock-ins not considered

Hulhumalé II

Hoarafushi

Reethi Rah

Komandoo

Vilufushi

Thilafushi II

Decision	Methods	Information needs	Limitations
1. Choose uniform design height policy for new land	Adaptation tipping points	MSL scenarios and extreme sea-level distributions Long-term regional SLR scenarios	 Does not account for local variation, e.g. in wave setup Does not account for exposure
2. Choose hazard-based design height strategy for new land	Adaptation tipping points	Same as above. + changes in waves + bathymetry	Does not account for exposureModelling deep SLR uncertainty
3. Choose risk- based design height policy for new land	Cost-benefit analysis	Same as above. + exposure data (e.g. area, population, asset values, etc.) + Model effectiveness of adaptation options	Computational intensiveModelling deep SLR uncertainty

Decision-analysis methods


Hazard analysis (tipping points):

- Adapted version of simple reliability analysis (van der Meer et al. 2009; Dupuits et al., 2017):
 - Land reclamation context
 - Simulation-optimisation approach for hazard-based island heights for a given maximum flood probability
 - Risk intolerance

Cost-benefit analysis

- Risk-based land reclamation not previously studied
- Setting resembles extensively studied risk-based flood defence height problems (van Dantzig 1956; Eijgenraam et al. 2017; Dupuits et al. 2017; Zwaneveld et al. 2018)

Hazard analysis: solution method

Conclusions

- → Hazard-proof island heights without additional adaptations are very uncertain due to SLR uncertainty beyond 2050
- → Hazard method can inform site selection:
 - → Local flood hazard greatly differs across locations in the Maldives
 - → Key drivers: swell exposure; distance to the reef, reef water depths
- →Method is relatively lightweight in terms of data requirements and computations:
 - → Requires 1 bathymetric data and design alternatives
 - → All other hazard inputs available in the literature

More broadly → Different decision context require different decision-making methods, which in turn require different kinds of sea-level information:

- Probabilist forecasts for the short term
- Worst case scenarios for the longer-term and the risk averse
- In both cases: Information on what we will know in the future

Thanks!

sandy.bisaro@globalclimateforum.org

thomas.van.der.pol@globalclimateforum.org hinkel@globalclimateforum.org

