

Ocean Model Development Panel (OMDP)

Co-Chairs

Simon Marsland (CSIRO, Australia), Gokhan Danabasoglu (NCAR, USA)

Mature: Coordinated Ocean-ice Reference Experiments (CORE-II)

Planned: Ocean Model Intercomparison Project (CMIP6/OMIP)

Emerging: New forcing product: JRA-55 (Japanese Re-analysis)

Thanks to Steve Griffies, Hiroyuki Tsujino, Veronika Eyring

http://www.clivar.org/clivar-panels/omdp

Coordinated Ocean-ice Reference Experiments (CORE)

Normal Year Forcing experiment (CORE-I): Griffies et al., 2009, Ocean Modelling

- 500 repeat years with synoptic variability (Griffies et al., 2009, Ocean Modelling)
- Large and Yeager (2009) corrected NCEP-NCAR reanalysis forcing
- Individual models choose own sea surface salinity restoring timescale
- Experiment for model-model intercomparison and benchmarking

Interannual Forcing Experiment (CORE-II): Danabasoglu et al., 2014, Ocean Modelling

- 5 x Repeat cycle hindcast 1948-2007 with interannual variability
- Addresses science questions related to real world events
- Special issue of ocean modelling now 9 papers published
- http://www.journals.elsevier.com/ocean-modelling/virtual-special-issues/virtual-special-issues/virtual-special-issue-core-ii
- Atlantic x2, sea-level, southern ocean x2, arctic x3, pacific, ...

CORE-II poster cluster: Wednesday

CORE-II Poster Cluster – Wednesday: 12 posters Ocean and Climate Dynamics

Setup in Donghai Salon II - Wednesday

Wednesday: Session 3 - 19:30-20:30
Ocean and Climate Modelling Town Hall Meeting

Ocean Model Intercomparison Project (CMIP6/OMIP)

Eyring et al, GMD, 2016

Eyring et al, GMD, 2016

OMIP Science Goals

OMIP addresses the CMIP6 science question on investigating the origins and consequences of systematic model biases, by providing a framework for evaluating (including assessment of systematic biases), understanding, and improving ocean, sea-ice, tracer, and biogeochemical components of climate and earth system models contributing to CMIP6.

Among the WCRP Grand Challenges (GCs), OMIP primarily contributes to the regional sea-level rise and near-term (climate / decadal) prediction GCs.

OMIP Overview

Specifically, OMIP provides a framework to:

- investigate physical, chemical, and biogeochemical mechanisms that drive seasonal, inter-annual, and decadal variability;
- attribute ocean-climate variations to boundary forced versus natural;
- evaluate robustness of mechanisms across models and forcing data sets;
- bridge observations and modeling by complementing ocean reanalysis from data assimilation;
- provide consistent ocean and sea-ice states useful for initialization of climate (e.g., decadal) predictions.

OMIP Part I: Diagnostic analysis of CMIP6 ocean components

CMIP Special Issue of Geoscientific Model Development

http://www.geosci-model-dev.net/special_issue590.html

S.M. Griffies et al, 2016: OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project, accepted.

J.C. Orr et al, 2016: Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP), in review.

OMIP Part II: Global Ocean and Sea-ice Simulations

- Tier 1: 310-year ocean/sea-ice hindcast
 - 1948-2009 by 5 repeat cycles
 - Initialised BGC fields from climatology
- Tier 2: 310-year simulation with interactive BGC after order millennia spin-up

Japanese Re-analysis (JRA-55)

Weaknesses of CORE-II:

- Over 10 years old, produced 2004 (last updated 2009); no new updates anticpated
- Lower resolution (space and time) product

Strengths of JRA-55:

- Higher resolution (space and time) product as models go to higher resolution
- Near real-time updates (tackle science questions for 'current' events
 - e.g. "hiatus", 2015 El Nino, Arctic sea-ice decline, ...

Feature	JRA-55	CORE-II
Space resolution	55 km	200 km
Time resolution for the meteorology fields	8 times per day	4 times per day
Years available	1958-2015 (will be frequently updated)	1948-2009 (not updated)

Participation in CORE-II/JRA-55 comparisons:

MRI, NCAR, Kiel, CSIRO (ACCESS) and more anticipated ...

Runoff to the ocean (JRA-55 + CaMA-Flood)

Catchment-based Macro-scale Floodplain model:

- CaMa-Flood; Yamazaki et al. 2011
- Forced by runoff from JRA-55 land surface model adjusted relative to Dai et al. (2009)
- Horizontal resolution : 0.25° x 0.25°
- Daily time interval
- Support data for mapping to the ocean model grid are also provided

Southern Ocean runoff???

Choices for JRA-55 experimental protocols:

- What about Antarctica/Greenland?
- Currently blank
- Option 1: CORE monthly climatology
- Option 2: Iceberg distribution climatology (e.g. Merino et al., 2016)
- Questions: defining icescape? changing icescape? models with ice-shelf cavities?
- What will SOMIP do for landice/runoff from Antarctica???

Southern Ocean runoff???

Choices for JRA-55 experimental protocols:

- What about Antarctica/Greenland?
- Currently blank
- Option 1: CORE time invariant annual mean climatology
- Option 2: Iceberg spatial distribution seasonal climatology (e.g. Merino et al., 2016)
- Questions:
 - liquid versus solid?
 - No distinction in CORF
 - Deeporter et al. 2013, Rignot et al. 2013, converge on total, no seasonal cycle, distinguish liquid/solid
 - defining icescape? BEDMAP2, what other products?
 - changing icescape?
 - injection over depth at coast?
 - models with ice-shelf cavities?
- What will SOMIP do for landice/runoff from Antarctica????