

Surface fluxes and transports from Global Ocean Reanalyses

Maria Valdivieso

Department of Meteorology, University of Reading, UK

m.valdiviesodacosta@reading.ac.uk

<u>Co-authors:</u> K. Haines, M. Balmaseda, Y-S Chang, M. Drevillon, N. Ferry, Y. Fujii, A. Köhl, A. Storto, T. Toyoda, X. Wang, J. Waters, Y. Xue, Y. Yin, B. Barnier, F. Hernandez, A. Kumar, T. Lee, S. Masina and D. Peterson

Context

- Part of the Ocean Reanalysis
 Intercomparison Project (ORA-IP)
 under the GOV and CLIVAR-GSOP (see Balmaseda et al. 2015 for details).
- Contributing to the ESA activity "Towards Improved Estimates of Ocean Heat Flux" (TIE-OHF) (PI: A. Bentamy, IFREMER)

Results

- 1. M. Valdivieso et al. (2014): Heat fluxes from ocean and coupled reanalyses. CLIVAR Exchanges Issue no. 64, 28-31, February 2014.
- 2. M. Valdivieso et al. (2015): An assessment of airsea heat fluxes from ocean and coupled reanalyses. Climate Dynamics, Special Issue: Ocean Reanalyses, In Press.

Objectives

- Global heat budgets and the ocean transports implied by ocean reanalysis heat fluxes
- Ensemble consistency of flux variability on seasonal to interannual time scales
- Comparisons with available surface heat flux datasets (primarily ship, satellite, atmospheric reanalysis or hybrid products)
- Documenting errors against in situ flux measurements at a number of OceanSITES moorings

ORA-IP Datasets

		ORA-IP Data Sets	Model	Forcing	Assimilation	Period	Reference
Low Resolution	1	BOM PEODAS	MOM2, 2°	ERA40/NCEP-R2	EnKF (T, S, SST)	1980-2012	Yin et al. (2011)
	2	ECMWF ORAS4	NEMO, 1°	ERA40/ERAi Flux Forcing	3DVAR (T, S, SLA)	1960-2009	Balmaseda et al. (2013)
	3	MRI/JMA_MOVEG2	MRI.COM, 1°	CORE.2 with CORE Bulk Fluxes	3DVAR (T, S, SST, SLA)	1948-2007	Fujii et al. (2015)
	4	MRI/JMA MOVECORE	MRI.COM, 1°	JRA-25 with Bulk Fluxes	3DVAR (T, S, SST, SLA)	1993-2012	Toyoda et al. (2013)
	5	U. Hamburg GECCO2	MIT, 1°	NCEP-R1 with Bulk Fluxes	4DVAR (T, S, SST, SLA)	1948-2010	Köhl (2014)
	6	JPL ECCOv4	MIT, 1°	ERAi with CORE Bulk Forcing	4DVAR (T, S, SLA)	1993-2010	Wunsch & Heimbach (2013)
My Ocean	7	NCEP GODAS	MOM3, 1°	NCEP-R2 Flux Forcing	3DVAR (T, SLA)	1980-2011	Behringer (2007)
	8	CMCC C-GLORS05v3	NEMO, ½°	ERAi corr + CORE Bulk Forcing	3DVAR (T, S, SST, SLA)	1990-2011	Storto et al. (2014)
	9	U. Reading UR025.3	NEMO, ¼°	ERAi with CORE Bulk Forcing	OI (T, S)	1989-2010	Haines et al. (2012)
	10	U. Reading UR025.4	NEMO, ¼°	ERAi with CORE Bulk Forcing	OI (T, S, SST, SLA, IC)	1989-2010	Valdivieso et al. (2014)
	11	Met Office GloSea5	NEMO, ¼°	ERAi with CORE Bulk Forcing	3DVAR (T, S, SST, SLA)	1993-2010	Blockley et al. (2013)
	12	Mercator GLORYS2v1	NEMO, ¼°	ERAi corr + CORE Bulk Forcing	KF (T, S, SST, SLA)	1993-2009	Ferry et al. (2012)
upled	13	Mercator GLORYS2v3	NEMO, ¼°	ERAi corr + CORE Bulk Forcing	KF (T, S, SST, SLA, IC)	1993-2011	Ferry et al. (2012)
	14	MRI/JMA MOVE-C	MRI.COM, 1°	Coupled Model Fluxes	3DVAR (T, S, SST, SLA)	1993-2011	Fujii et al. (2009)
	15	NCEP CSFR	CSFRv2/MOM4, ½°	Coupled Model Fluxes	3DVAR (T)	1980-2011	Xue et al. (2011)
S	16	GFDL ECDA	CM2.1/MOM4, 1°	Coupled Model Fluxes	EnKF (T, S, SST)	1993-2011	Chang et al. (2013)

• Most reanalyses are forced with bulk formula using an atmospheric reanalysis product

CLIVAR/GSOP Intercomparison of Ocean Reanalysis Transports

Maria Valdivieso and Keith Haines – U. Reading, UK

- Horizontal, depth-integrated transports (volume, heat and salt) by basin
- Ht transports only included. Freshwater also done
- Divergences v surface fluxes underway

Meridional heat transports by basin

Heat transports (cont.)

Time-mean (2001-10) heat transport estimates from ocean reanalyses

Error bars representing the STD of the annual mean estimates over the years 2001-2010

Global Heat Budget

- Most ORA-IP surface fluxes (<u>blue</u> <u>bars</u>) have global positive biases (i.e., net heat flux into the ocean) over 1993–2009
- The 16-member ensemble mean ~4 Wm⁻² (grey bar)
- Interannual variability ~1 Wm⁻² related to ENSO (red error bars)
- Assimilation of ocean observations removes heat from the ocean on a global basis (<u>orange bars</u>)
- Total heat flux applied (surface fluxes + assimilation sources) are reduced to small positive imbalances, typically ~1-2 Wm⁻² (green bars)
- These are generally smaller than for observational-based products – Bulk Formulae estimates applied to ship/satellite obs have typical overall bias in the range +15-25 Wm⁻²

Implied Ocean Heat Transports

Global surface imbalances have large implications for balancing heat transports (discrepancies in the north up to + 9 PW)

The ensemble spread in ORA-IP shaded around the mean) grows apidly in the SO and crossing the cropics \rightarrow largest uncertainties in net surface heat fluxes occurs in the SO and in the tropics.

Better agreement in the implied MHT with obs at various sections by combining **'Surface + Assimilation'** fluxes, but not in the tropics (due to lack of a pressure gradient bias correction in some of the DA systems; see Bell et al. 2004 for details).

Global meridional net surface heat transport inferred from integrated heat fluxes, starting in the south (i.e., the Antarctic continent) in comparison with WOCE-based inverse model estimates at control sections from Ganachaud and Wunsch (2003) and Lumpkin and Speer (2007)

The ensemble of 16 ORA-IP products in comparison with other additional products .

Role of Assimilation and Assimilation increments

i) Closing Reanalysis heat budgetsii) Detecting process errors

Ocean Reanalysis Twin Expt.

- Global NEMO 1° Ocean Assim and ERA-Interim Met 1989-2007
- 2 identical Assim runs with a small change in the SW radiation
- Ocean Assimilation controls
 - Ocean Advection of Ht.
 - SST and hence q_{LAT} , q_{SEN} , q_{LW}
 - Should be ~same in both runs
- Change in the SW can then be recovered from the change to assimilation increments
- Demonstrates principle that Ocean data assimilation can give forcing error information without 4DVar approach
- Assim increments do contain information on real heat flux errors which will show up on larger scales.
- Similarly with freshwater budget and S assimilation especially Argo

Delta Assim T increments

NCEO fellow Maria Valdivieso

Regional FW budget 2004 - 2010

Regional Heat budget 2004 - 2010

60°E

120°E

180°W

120°W

60°W

Further work

- Evaluate Reanalysis transports
 - Should be better than model only products
 - Role of assimilation in correcting transports
- Regional heat budget analyses (Cages)
 - Can assimilation increments be understood as corrections to surface fluxes?

Finish

Regional Heat budget 1989 - 2010

Assimilation increments near surface (Product UR025.4)

Increments show seasonal mixing errors Top 30m always warmed, 30- 120m always cooled

Assimilation maintaining near surface thermocline against mixing

Other Surface Heat Flux Data

Туре	Data Sets	Resolution	Period	Reference	
Ship-Based	NOC2.0	Monthly, 1°	1973-2009	Berry and Kent (2009)	
	CERES	Monthly, 1°	2000-	Loeb et al. (2009)	
Satellite-	ISCCP-FD	3 Hourly, 2.5°	1984-2009	Zhang et al. (2004)	
Based	J-OFURO	Daily, 1°	1988-2008	Kubota et al. (2002)	
	HOAPS	Monthly, 0.5°	1987-2008	Andersson et al. (2010)	
	ERA-Interim	6 Hourly, T255	1979-	Dee et al. (2011)	
	JRA-55	Daily, 1.25°	1958-	Kobayashi et al. (2015)	
NWP	MERRA	Hourly, 0.5°	1979-	Rienecker et al. (2011)	
	NCEP-R2	Hourly, T62	1979-	Kanamitsu et al. (2005)	
	CORE.2	Monthly, 1°	1948-2006	Large and Yeager (2009)	
Hybrid	TOA CERES/ERAi Divergence	Monthly, 1°	1984-	Liu et al. (2015)	
	OAFlux	Daily, 1°	1983-	Yu et al. (2008)	
	TAO/TRITON	Daily, Tropical Pac.	2007-09	McPhaden et al. (1998)	
Ruan	RAMA	Daily, 15°N90°E	2007	McPhaden et al. (2009)	
БиОу	PIRATA	Daily, Tropical Atl.	2007-09	Servain et al. (1998)	
	WHOI Stratus	Daily, 20°S85°W	2001-09	Weller et al. (2015)	

The ORA-IP heat flux products are compared with other global air-sea heat flux data based on **ship observations, satellite data, atmospheric reanalyses, or hybrid products** (a combination of atmospheric reanalysis and remote sensing products), and locally, with **buoy flux data** measured at moorings (limited in both time and space) – *details in Valdivieso et al. (2014, 2015).*